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By Alberta Klksne 

SUMMARY 

Computations of wave drag based on linearized theory have been per- 
formed for four wing-body combinations tested by White& and reported 
in NACA RM L52HO8. The results are shown in comparison with the experi- 
mental data. Two computational techniques for evaluatfng the integrals 
in the theoretical expressions for wave drag are discussed, namely, 
Fourier series and graphical or numerical integration. Advantages and 
disadvantages of each are pointed out. 

INTRODUCTION 

Recently Whitcomb (ref. 1) has postulated, and demonstrated experi- 
mentally, that the wave drag of a system of wings and bodies at a free- 
stream Mach number very near unity is approximately the ssme as that of 
an equivalent body of revolution, that is, of a body of revolution having 
the same stremmise distribution of cross-sectional area. A similar con- 
clusion was reached by Hayes (ref. 2) 
as the Mach number goes to 1, and can 
by Heaslet, Lomax, and Spreiter (ref. 

as a limiting case of linear theory 
be expressed by the fommla given 
31 l 

where f'(x) is the derivative with respect to x of a source strength 
which is related to the system of wings and bodies under consideration, 
2 is the over-all length of the system and f(0) = f(2) = 0. 

. 
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For a slender body of revolution the source strength is proportional 
to the normal component of the stream velocity at the body surface, and 
sources of the appropriate strength may be placed on the x axis. Equa- 
tion (1) then reduces to the following, which is also recognizable as 
von Kar&n8s formula for supersonic wave'drag (ref. 4). 

povo2 
2 2 

D(m41+)=~ o o s'r(x&3r'(x2)4x~ - x2kb2 
ss (2) , 

wlaere S*'(x) is th e second derivative with respect to x of the cross- 
sectional area intercepted by a plane perpendicular to the stream direc- 
tion. For Mach numbers near 1 this formula can be used also for wing- 
body combinations , provided the area distribution is sufficiently smooth 
and appropriate conditions apply at the nose and tail.. 

In the case of supersonic flow, wing theory provides the following 
formula which is exact, within the limits of linear theory, for a plane 
nonlifting wing (ref. 2): 

D=a~2gdeJJ1 f*(x=,S cos e)f'(x2,8 cos e)hlxl - ~~Idx~ax~ , 
(3) 

where p = j- and 8 is the azimuth angle (see sketch (a)). 
In reference 2 relations are given between the velocity components on 
the wing and the source strengths, Integrated along the lines on which 
x + yS cos B = constant and concentrated on the axis at the point of 
intersection. 

Sketch (a) 

The problems of interest 
at present concern more compli- 
cated configurations made up 
of wings and bodies In comblna- 
tion, and in this case a diffi- 
culty arises in fixing the 
relations between the geometry 
of the configuratFons and the 
strengths of the singularities 
to be used in simulating the 
actual Shape. In reference 5 
R. T. Jones presented a super- 
sonic area rule which is appli- 
cable to a large class of wing- 
body combinations including 
configurations involving thin 

. 

0 



NACA RM A55AO6a 3 
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tings mounted centrally on slender bodies of revolution. In effect, the 
supersonic area qLe introduces into equation (3) the approtite relation 

f* (x,p COB 8) = s~*(~,p cos 0) 

where the primes indicate differentiation with respect to x, and where 
S(xo,S cos e) is the projection normal to the stream direction of the 
cross-sectional area intercepted by a plane tangent at 8 to the Mach 
cone whose vertex is at the point xo on the x axis. Returning to 
sketch (a) one can see that the plane tangent to the Mach cone inter- 
sects the xy plane in the line x-x. = yS COB 9. It was along such 
lines that the sources were integrated in the case of a plane, nonlifting 
wing discussed in reference 2. 

The use of the above relation for f*(x,R cos 6) makes it possible 
to rewrite equation (3) as follows: 

D= _ %i!& f2x d@ffl srr(xl,p COB e)s~(x2,p cos e)lnlxl-~21axldx2 
0 0 0 

w 

After two integrations by parts, taking proper account of the singulari- 
ties, and the use of the requirement that S*(O) = S'(2) = Q, this 
reduces to 

povo2 
2’11 

E- 
s 8sr2 o 

[1(p cos e)]ae (4b) 

where I(S co6 e) is defined by the double integral. Note the use of 

the symbol 
f 

to indicate the "generalized principal part" as discussed 
by Heaslet and Lomax in reference 6. 

. 

The present paper applies the theoretical formulas given above to 
compute wave drag and discusses the technique of carrying out the analy- 
sis . Pmcedures for camputing the area distributions, S(xo,R cos e), 
and their derivatives, S*(xo,p cos e), for a given configuration are dis- 
cussed and certain convenient simplifications are studred. Two cmputa- 
tionalmethods of evaluating the integrals are considered, namely, Fourier 
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analysis and numerical integration. The Fourier series method has been 
previously considered in references 5 and 7. 

A 

&(B ~0s d 

An 

an 

CD 

c or C(Y) 

D 

f(x) 

I or 
I(S COB e) 

K 

2 

M, 

m,n 

r 

r0 

S 

aspect ratio 

Fourier coefficients corresponding to S*; 

2 A 
3 s 

S'()b,p COB B)sin ncp dcp 
0 . 

same as An(p cos EJ) 
(The parenthesis is omitted for-convenience when it is not 
important to stress the functional nature of the symbol.) 

Fourier coefficients corresponding to 6'; $ 
s 

R 
st sin ncp dcp 

0 

wave-drag coefficient, D. 
PoVo2, 
- SW 2 

local chord of wing 

wave drag 

source strength at x 

value of double integral in equation (4b) (see also eq. (10)) 

maximum height of peak of an arbitrary curve 

over-all length of wing-body system 

free-stream Mach number 

integers 

radius of body 

maximum radius of body : 

saue as S(xo,P cos e) or S(x) 
(The parenthesis is omitted for convenience when it is not 
important to stress the functional nature of the symbol.) 

-- 
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s (4 cross-sectional area in plane perpendicular to free-stream 
direction 

S(x,,~cos8) projection on plane x=x0 of cross-sectional area in a 
plane tangent at 8 to a Mach cone originating at x. 
(see sketch (a)) 

SW area of wing plan form including that psrt masked by the 
bow I fl 

8 componentof S;S=S,+s,+..Ji 

t local thickness of wing (twice the ordinate of the upper 
surface) 

t 
c! 

VO 

X,YY = 

x, 

yI or ~2 

P 

6 

8 

local thickness ratio of wing 

free-stream velocity 

Cartesian coordinates (see sketch (a)) 

vertex of Mach cone (see sketch (a)) 

limits of integration 

G 

half width of peak of an arbitrary curve 

azimuth angle, angle in an x = constant plane &ich 
identifies a point on the Mach cone (see sketch (a)) 

PO 

cp 

‘PO 

r 

free-stream density 

=c CO8 (l - 25) 

value of cp at maximum point of peak of an arbitrary 
curve 

differentiation with respect to x or x. 

DISCUSSION OF COMEUTATION.AL 

Generally speaking, the formulas for wave 
duction, specifically, equations (2), (b),and 
to give a realistic magnitude of the wave drag 

TXE?lEODS 

drag given in the Intro- 
w , cannot be expected 
at a Mach nmiber of 1, 
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since the pressures, in linear theory, become infinite. However, as the 
Mach number increases the agreement should improve. The more slender 
the configuration the narrower should be'the range of Mach numbers show- 
ing poor agreement between theoretical and measured wave drag. 

Furthermore, difficulties can be eected to arise in the use of 
equations (2). and (4) wh enever there are discontinuities Fn S1 or St*. 
Some singularities are, of course,integrable. For instance, so simple 
a configuration as a Sears-Haack body possesses a singularity in S** 
at the nose, yet integration produces a finite drag. Any conffguration 
with a step Fn the S* curve has an infinite value of I(/3 cos 13) in 
equation (4b) for every value of B for:which the step occurs. Such a 
step, for instance, occurs when the 1eadFng edge of a wing lies along a 
Mach line unless the leading edge Is cus*d. It is possible to obtain 
finite drag, using equation (bb), for configurations having a finite 
number of logarithmic singularities in I(f3 cos Cl), but not for a con- 
figuration for which the infinity extends over a ffnite range of 8. 

The first and most difficult step iti evaluating the wave drag is 
the performance of the double integration with respect to x, that is, 
the evaluation of I(/3 cos 6). Difficulties arise from several sources. 
First, the evaluation of Sr(xo,p cos 8) is not simple for a configura- 
tion of practical interest. Second, this function, when found, is not 
generally known in analytic form and some means of approximating it by 
an analytical expression is desirable as '9 means of avoiding detailed 
numerical calculations. Third, the integrand has a singularity at 
Xl = x2 and therefore i.s not suLtab.le.Xo;. fL,lzectierkti integration 
in this form. 

Ways of surmounting these difficulties are discussed in the follow- 
ing sections. 

Computation of S*(xotP co8 0) 

Before undertaking the computation of S'(xo,/3 COB 6) as defined 
following equation (3), it is desirable to make a further simplifying 
assmption. If the system consists of a body combined with a thin wing 
lying in the xy plane, as was the case for the configurations studied 
herein, it is assumed satisfactory to replace the plane tangent to the 
Mach cone by a plane perpendicular to the xy plane through the line 
X-x0 = yp COB 8. It is then possible, as was done for reference 7, to 
plot the ordinates of the wing and body at pz&nts in this plane, project 
on the plane x = xo, integrate to get S(xo,p cos e), and plot the 
results as a function of xo. The resulting data can then be differen- 
tiated graphically or numerically to obtain S*(xo,P cos 6). However, 
such a differentFation fs difficult to perform accurately and care must 
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be taken in fairing the resulting FFnts if a realistic picture of 
Sr(xo,/3 cos G) for the configuratr$n is to be obtained. 

In the following paragraphs a procedure is shown for computing 
S*(xo,S cos e) without resorting to numerical differentiation except in 
certain particular cases. It. consists in setting up an analytical 
expression for S(xo,S cos&) which can be differentiated analytically, 
thus making both S and Sf..:'readil.y available. 1 

The wing-body system .to be studied is first broken down into its 
various components. For instance in the present cases the body and each 
wing panel are considered separately. 
s(%,j3 ~08 e> 

The curve S(xor j3 co8 e) or 
0 f the whole system is then the point-by-point sum of the 

curves for the components. 

Calculation of S*(xo,P COB t3) for a body of revolution.- To obtain 
S*(xo,p cos 6) analytically for even a simple body of revolution is some- 
what difficult and it becomes much more so for an irregular indented 
body. However, it has been assumed in the present case that for a slender 
body a further approximation is permissible at Mach numbers near 1, 
namely, S'(xo) can be substituted for S*(xo,S cos e), which means that 
only cuts perpendicular to the stream direction need be used. This is 
in accordance with slender-body theory. 

As will be shown later Fn this paper, unless the body edifications 
are slight and gradual the wave-drag results will be somewhat different, 
depending on whether normal cuts or slant cuts are used in the computa- 
tion of St of the body. A difference will appear when the abruptness 
of the body modifFcation results in a significant difference between the 
area in a plane normal to the stream direction and the projection on 
that plane of the area in a plane at an oblique angle having the same 
intersection tith the x axis. This is contrary to the assumptions of 
slender-body theory and the question of.Ghether or not the added complex- 
ity of using slant cuts through a body of revolution is justifiable for 
M. > 1 has not been determined. 

When the radius of a body of revolution is known as a function of 
xo, both S(xo) and S*(xo) are readily obta-lned. For a body which 
has been modified in accordance with Whitcomb's srea rule to give the 
same ST(xo) at M. = 1 for the wing-body combination as for the unmodi- 
fied or basic body alone, the relation of the radius to x. in the 
modified region usually cannot be expressed as a simple function, but in 
that case S*(xo) of the modified region is simply S*(xo) of the basic 
body less St(xo) of the wTngs. Thus for this type of modification, 
no numerfcal differentiation is required to obtain S*(xo) of the modi- 
fied region if S*(xo) of the wings can be computed directly, and if 
S*(xo) of the basic body is known. 
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. 
Calculation of S'(xo,/3 cos e) for a:wing panel.- To obtain 

S(xo,p cos e) and S*(xorP cos 0) for a wing panel for which the thick- 
ness ratio t/c and plan form can be exp??e66ed as functians of x and y, - 
it is only necessary to make the substitution 

X = x, + YB CO6 8 

so that $bY) can be r'eplaced ky t(~,y,jXcos e). Then C 

---_ uvef age value 
of y of fie wing 
foot OS used in 

Y 

I 

i 

I 

X 

Sketch (b) 

=y 

$ bo,y,P ~0s @> [c(y)ldy 1 
and : 

*(xo,Y,B CO6 e) 1 k(y) IQ 
where : c fs the local chord and the 
limits yl and y2 are function6 of 
x, and $ CO6 e determined from the 
plan f!orm (see sketch (b)). 

.- . . . . ._ --_. .___ .., _ 
The differentiation can be per-- -- 

-..-- 

formed as follows: 

e j IL1 CO6 e) b(Y2)1 - 1 
d I[’ $(x,,Y,,I~ ~06 e> 14~~) 1 + 1 



The only instances in which the first two terms on the right will not 
vanish occur when one of the 1TmTts is a function of x. where the 
thickness ratio has at the same time a nonzero value. This will occur 
at the wing root when the wing is attached to a body of varying radius 
as in an indented region. If the variation of r with x. is small, it 
is permissible to use a constant, average value of r, or y, at the junc- 
ture of the wing and body, thus completing the elimination of the first 
two terms. This simplification,-which amount6 to the assumption of a 
straight wing root, was used in the present computations and investiga- 
tion showed that the error introduced Gas negligible for the cases 
considered. . 

It is usually possible to devise an approximate expresston for the 
thickness ratio of the wing, in terms of ' x and y, for which the integral 
in equation (5) can be evaluated an&lytically. If a single simple expres- 
sion cannot be found, no great complication is introduced by using dif- 
ferent expressions for different regions of the wings. This technique 
permits direct computation of Sr(%,p cos e) for each wing panel without 
resort to graphical differentiation. In fact, the computation of St 
may be no more difficult than the computation of S. 

Evaluation of Wave-Drag Integrals by Fourier Series 

The function St(xo,/3 co6 0) for a wing-body combination can gener- 
ally be determined at as many points as may be required, but cannot, 
except in special cases, be expressed in a simple analytical form. Eow- 
ever, it can be approximated by a Fourier series: 

cn 
s’(m,p CO6 e) = 

c 
An(S co8 e)Sti ncp-! 

n4 
where 

cp = arc CO8 
v3 

and 

b(p c06-8) = 5 
s 

SC 
St&,8 cos e)sin nq, acp 

0 

where the notation An(p cos e) indkates that the coefficients are 
functions of both Mach number and azimuth angle. 
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When the Fourier series has been substituted for St(xo,j3 COB 0) in 
equation (&b), the first two integrations can be performed to give 

D n [An( B co6 6) fde -' 

At M. = 1, since p co6 e = 0 for al.1 values of 8, equation (4a) 
reduce6 to equation (2) and 

“PoVo2 w D(&,+l+) = 8 c n&J2 
- 

(See refs. 7 and 8.) 1 For other Mach number6 it is usually convenient 
to perform the final integration -graphically. 

The Fourier series method of performing the first two integrations 
is admirably suited to the use of punched-card computing machines or 
other mechanized computing systems as long as the W~P ~0s e) 
curves are smooth and without sharp peaks. When such machines are 
available and the information is provided in the form of plot6 of 
St(xo,f3 COB e) vs. cp, the evaluation of the double integral for each 
case requires only about 2 hours. 

One drawback of the above method.is that Ff the St curve has sharp 
peaks, the Fourier series till not be able to represent the function ade- 
quately in a-reasonable number of terms, .Fw thy mssent analms 24 
terms were available and in some case6 that was not enough to bring the 
series to convergence. In such a case the solution, per se, is clearly 
not valid. Various checks are available to determine.the convergence of 
the series for a partLcular case though little can be said in general. 
The coefficients ,can be used to recompute an S' curve to compare with 

m 
that originally provided, or the 

c 
n (An) 2 can be plotted agafnst m 

IIt=1 
and the trend noted; or some forecast of the number of terms required for 
convergence can be obtained by a method such as that shown in the next 
section. 

'Note that in reference 8 the Fourier coefficients differ by r( 
from those defined herein. 

. 
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c 
Further Investigation of the Fourier Series Method 

The Fourier series method has been used in reference 7 as well as 
by the present author for the computation of wave drag from equation (&b), 
and it is subject to the danger already pointed out of failure of the 
series to converge in the available number of terms. For this reason a 
further study was undertaken, leading to a clearer picture of the rela- 
tion between S'(a,p cos 0) and the corresponding Fourier coefficients. 
In addition, the technFque developed for this study was used in evaluat- 
ing the simplifications mentioned in the section on computatFon of 
Sbo,B ~0s 0) and S'(xo,P co6 63). 

Computation of Fourier coefficients for isolated peaks.- If the 
curve to be represented is considered as the sum of a number of compon- 
ents 

S’ = 81’ + s21 + s3r + . . . 

the corresponding Fourier series is then the sum of the series repre- 
senting the components, from which it follows that 

An = an1 + an2 + ane + . . . 

where 

s 

SC 
2 anl= 3 sir sinncp dcp 

0 

Now if a component sl* consists of a single peak (see sketch (c)), 
the analytical form of the general term for the coefficients of a Fourfer 
stne series representing s1 can be 
stated as follows: If a peak of height 
K and width 26 is located at cp = cs, 

I I #=#o 
then, assuming the peak to be an isos- s&K n 
celes triangle, 
Fourier formula 

an = -& (1 

application of the 
fields 

- co8 nb)sin n'po (8) 

or, assuming the peak to be the upper 01 
half of a sine wave 0 

ti 
Sketch (c) 
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and 2 
. _ y1 

K sin ncpo 
lim an = 

(9) 

It is useful to note that both expressions ditide naturally into 
three parts: a periodic function whose period depends on cpo, a periodic 
function whose period depends on 6, and a dsmpFng factor of the order 
of l/n% For a sharpmnart%w p&Sk (6 < <]a?), COB n6 is a very long 
period function and, when combined with the damping factor, it provides . 
an envelope tithin which the shorter period oscillations due to sin ncp, 
are confined. This permits an estimate of the maximum possible size of 
a component an for any value of n. Sketches (d-l) and (d-2) show the 
coefficients anI and the envelope for a'peak of height K = -0.85 

.5 

4 

.3 

.2 

an 
./ 

0 

-./ 

-.2 

-.- .- . 

0 computed by eq (9) 
A previous compuiations 

K= - .85 

2% 
= I.98 radians 
= .36 ‘I -. 

4 8 /2 /6 20 24 28 32 
n 

Sketch (d-l) 

\ a 

\ 

K =.75 
$5 =; E$ radians 

= ,, 
6 

\ 
,enveiqoe of am2 

I- -k 8 1’2 16 
n 

Sketch (d-2) 
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and width 26 = 0.36 radians located at cpo = 1.98 radians, compared 
with a similsr plot of the coefficients an and envelope, for a peak 
of height K = 0.75 and width 26 = 1.57 ra&ans located at cp = o .8 
radians. Note that for n > 5 the sharp peak (26 = 0.36) woul8 play the 
dominant role in the sum An = ani -t- ans. (The coefficients ans had 
previously been computed on the punched-card tiomputing machines and are 
plotted in sketch (d-2) as a check on the accuracy of this technique.) 

It is encouraging from the point of view of the general usefulness 
of the Fourier method of computing wave drag that, for such peaks as QJ 
assumed above, if R is finite and 6 f 0, then 

c d&J2 will always 

converge in a fashion related to l/n s msking it p&sible to judge 
roughly the number of terms required. 

Application of the method of isolated peaks to the study of cower- 
gence.- 
withone 

It was found feasible, when a curve of S* was largely smooth 
or two sharp peaks, to determine with the help of equation (9) 

at what point the coefficients due to the smooth part would become neg- 
ligible, and, from that point on, to compute coefficients due to each of 
the sharp peaks separately by either equation (8) or equation (9). This 
was done out to n = 35 for several cases, and to n = &Cl for one case, 

where the series 
c 

n[An(S COB 8)j2 failed to converge within the 24 

terms available from the punched-card computing machines. Sketch (e) 
m 

shows a typical plot of 
c d&J2 against m. Additional points 

n=i 
beyond m = 24 are plotted with flags on the symbols. 

It must be remembered 
that, after computing coeffi- 4 
cients separately for more 
than one component of a curve, - 
it is necessary to add the +A,* 8. 
coefficients together to get 

2 

a total coefficient for each 
value of n before perform- 
ing the squaring and summing 
operations. Otherwise the 
interference between the compon- 
ents will be lost. 

I I I I t I I I I 
8 16, 24 32 40 

Sketch (e) 

The phenomenon shown in sketch (e) of apparent comnvergence at one 

point in the series followed by further increase in 
c d&d2 with 

n=l 
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additional terms can be seen from consideration of t&above technique 
to be due, at least in some cases, to the interaction of two or more 
peas, resulting in "beats" in the total coefficients An where the 
component coefficients anltan22 l l l cancel each other over a certain 
range and later reinforce each other. 

In order to assure a valid solution'the series should be carried 
far enough to fit the S* curve in all its essential parts but not far 
enough to pick up extraneous effects from small variations in the curve 
such as those due to numerical or graphical differentiation. 

Application of the method of isolated peaks to the computation of 
Fourier coefficients for components added to a basic configuration.- In 
situations where it is desired to add a domponent to a system of wings 
and bodies for which the drag has already been computed by Fourier 
series, that is, for which the Fourier coefficients are already available, 
it is possible, using the technique described f;bove, to estimate the 
effect of the addition. The gradient of.cross-sectional area for the 
addition is plotted against the cp for the entire configuration, the 
Fourier coefficients are computed separately and added to the original 
set. This method was used in evaluating.the effect of using slant cuts 
through the body for Mach numbers greater than 1. 

In the section on computation of S'(%,B COB 6) for a wing-body 
combination, two simplifications were promsed. One, the use of a con- 

&ant average value of y (straight 
wing root) as one of the limits of 
integration in place of the more 
accurate variable limit was found to 
have a negligible effect on the 
S'(%,/3 cos 6) curve for the cases con- 
sidered. The other, the substitution 
of S' (xg) p cos e = o ins*ad of 
S'(xo,p cos e) for the body of revolu- 
tion in'computing Sf(xo,p co6 8) of 
the system (i.e., the use of normal 
cuts through the body regardless of 
Mach number) was found to have a pro- 
nounced'effect on the curve of 
S'(%,p COB f3) of the whole configura- 
tion when the changes in cross-sectional 
aTea ofithe bp.dy.+$re,.pot gradual, __ - 

1 
SE$tch~~~(f) shows the extent-to 

which the use of slant cuts altered the 

-2 
components of the Sf __. curve aesspciat& __ i.nJ 

0 8 /6 n 24 32 40 with the -i%.en~~reg& of the body 

Sketch (f) 
and theresulting change in the envelope 

- . 
e 
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of the Fourier coefficients corresponding to the negative peak. TJliS 
change resulted in more rapid convergence and consequently smaller coef- 
ficients for large values of n when slant cuts were used. 

The indication is that this simplifization, the substitution of 
St(%) of the body for S*(xo,R COB e) of the body for M. > 1, should 
receive careful consideration before it is used even though it is sanc- 
tioned by slender theory. If slant cuts through a body of revolution 
give results that differ significantly from those obtained using straight 
cuts, then computation of the wave drag for the body probably exceeds 
the bounds of the theory. 

Evaluation of Wave-Drag Integrals by ITumerical Integration 

The double integral in the form given in equation (4) is unsuited 
to numerical or graphical integration because of the presence of a sin- 
gularity at x1 = x2. An alternate form is displayed by M. Robert 
Legendre (ref. (9)) as follows: 

s 
I ; =- ss 

2 2 CS’(Xl,P COB e) - S*b52,l3 cos HI2 ax,ax, + 
0 0 (Xl -x212 

1 
s 

z [S’(x,j3 COB @I2 ax 

0 x(2 - x) 

Note that in this form no singularity appears at x1 = x2 unless 
S"(x) = OD. 

Within the limitations of the theory, the drag of any system of 
wings and bodies for which S*(xo,p COB 63) is available (either as a 
curve or's table of numerical values) can be computed directly using 
equations (10) and f&b), or a further adjustment can be made to permit 
the separate calculation of interference drag and the drag of the 
components. 

As suggested in connection with the study of the Fourier analysis, 
the curve St may be considered as the sum of various components 
61' + 62’ + 83' + . . . and it can be substituted into equation (10) in 
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thst form. Since the systems for which the wave drag is being computed 
frequently COnSiSt of 8 wing and 8 body, Or 8 basic COnfigu?XtFOn and 8 
modification, it 16 convenient to divide the derivat$ve of the are8 dis- 
tribution into two par.@, thus: 
tion (10) can be written 

If St(x) = slf(x) + s2'(x), equa- 
. 

I=$ 
2 

ss 
-l blrh) - ~I’b2)12 dxldx : + 2 2[sl’(x)]2 dx + 

(Xl - x2J2 0 0 s 2; o x(z - xl 

1 2 2 

20 0 ss 
1 s2’hI - s2’ (x2) I2 

.. .(x1 - x2>2 s 

2 
+t 

0. 

[s2t(x)12 dx + . --- 
x(2 - x) 

2 

ss 
z CWh) - s1’(x2)1rs2*bd - s$(x211 ax,ax2 + 

I 
0 0 (X1 - xzJ2 -- ..-_.. -...-._ .-.-. ___ _ -- 

where the first two terms lead to the wave drag of the component 8sso- 
ciated with slf(x), the next two terms t.~ that associated with s2'(x), 
and the last -t;wo terms, which need not be,positive., represent the Inter- 
ference between the two. If the %ve drag of the separate components is * 
known, either from previous computations or from test data, only the 

-- 

cross-product terms remain to be compute+ to giye the t&l. wave drag. 

Computations of wave dr8g have been-petionmed for four of the-wing- 
body combin8tions teBted.by Whitcomb and,the results are presented herein 
in comparison with the experimental wave:dr8g. The Appendix together 
with figure 1 give the pertinent.data to ;deBcrTbe each configuration. 

Fives 2 and 3 show typical examples of the.. St curves for the 
various configLlr8tions. In all cases Sy was computed by analytical 
methods. Any irregularities, therefore, are due to the combination of 
the component -parts of the configuration;and not to the inaccuracies of 
numerical differen-ti&ion. It is interesting to notice the difference ' 
in the height .=d ~sharPness_ ~f..the pes?e !-ln.--_s_l.._._ for the tti different-- ._.._ _.._ ._ _.. ._ 
wings. 

. 
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All the configurations shown in figure 1 are sufficiently slender 
to fall within the range of applicabflity of the theory, and it would be 
expected that for all of them the w8v-e~drag computations should have 
equal chance of SuccesB. The-basic bodies 8re the ljsme (cylindrical 
behind x = Z/2), the aspect ratios are the same, and the wings are both 
reasonably thin with respect to their own chord length and with respect 
to the body radius. However, closer attention reveals that the body 
modification that goes with wing B (i.e., the indent8tfon whtch is 
required to cancel the.- are8 exactly 8-t M, = 1) is not a gradual 
one, but is concentrated in a very small longitudinal distance. This 
Is particularly noticeable in comp8rison with the indentation for wing A 
and is even more obvious when the S' curves of the two configurations 
are compared. 

m 
The partial Bums 

c 
dAn(B COB 6) I2 have been plotted against m 

n=l 
up to m = 24 in each case and are shown in figures 4 and 5 for the same 
values of p cos 8 8s in figures 2 and 3. It should be noted that there 
is a marked f8Flure of the series to converge within 24 terms in sever81 
cases for wing B and that theBe coincide with the case8 of high, sharp 
&X+akB in s*(xo,p CO8 e). For certain cases where convergence was poor, 
additional terms of the series were computed using equation (8) or (g), 
and the Bmation including these terms is plotted in figures 4 and 5 
tith flags on the symbols. 

In 811 caBeB considered the wave drag h&s been computed from the _ 
partial BLULLB to n = 24, regardless of convergence, by plotting 
24 

c 
ntb(P ~0s 6) I2 against 8 and integrating graphically from 0 to 2sf. 

n=l 24 
The plots of 1 nk(B COB e> I2 against 8 are shown in figures 6 

n=l 
and 7(a). For several. cases where the series failed to converge for 
wing B, the additional term8 were used and the revised summation is 
plotted &g&in& 8 in figure 'j'(b). The wave-drag coefficient, CD, is 
plotted against Mach number in figures 8 and 9. Note that in figure 9 
there are curves corresponding to both swmnations, In figure 8 there is 
only one set of curves BFnce the convergence within 24 te-rms was satis- 
f8CtXXy. Figure 8 shows as good agreement as can be expected between 
theory and experiment for wing A, both on the basic 8nd on the modified 
body. As in reference 7, the agreement is poor at MC = 1 but improves 
with increasing Mach number. For ting B (fig. 9) the agreement is poor 
for M8ch numbers near 1 for the ting on the basic body but the theoretiwl 
curves approach the experimental with increasing Mach number, reaching 
good agreement for M8ch nlzmber greater than 1.06. For wing B on the 
indented body there is fairly good agreement near a Mach number of 1. 
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Good agreement at a Mach number of 1 for 8 Str&ight-Wing model optimized 
for MO = 1 ~'8s also found in reference 10. The agreement between theory 
and experfment for ting B on the indented body becomes less satisfactory 
8s the Mach number increases. However, there is some question concerning 
the experimental data for higher Mach numbers. For the range of Mach 
numbers presented it is believed poBBible'th8t reflected waves from the 
tunnel walls could h8ve influenced the measured drag coefficients for the 
modified bodies. In reference ll such an effect was found to exist. 

It is interesting that the range of greatest disagreement between 
theory and experiment COITeSpondB with the: range of poor convergence, 
that is, with the range in which the St curveB are characterized by 
excessively high peaks. Since it is to be expected that the use of 
slant cuts through the modified region till reduce the height of the 
peaks, the wave drag for wing B on.the indented body has been recomputed 
using slant cuts through the body for the highest Mach number considered, 
nsmely, 1.1. Figure 10 shows the suIIIlaatiOn plotted 8g8hBt m and 
against 8. The resulting values of the wave-drag coefficient have been 
plotted in figure 9. The circle m8rks-Lhe result using 24 terms and the 
flagged circle, the result using 35 terms.: Note th8t the more rapid 
convergence due to the uBe of slant cuts has made a considerable differ- 
ence, about 18 percent in the latter case, although the difference within 
24 terms is slight. The appearance of a difference due to using slant 
cuts indicates the possibility that the bounds of the theory have been 
exceeded. 

AB 8 test of the praCtiC8bility of Using 8 numerical integration 
technique sample computations have been performed using both equa- 
tions (1Oj 8nd (11). The resulta are plot;f;ed in figures 8 and 9 for 
comparison with those from the Fourier analysis. Attention is called to 
the.fact shown in figure 9 that the wave drag computed by this method 
for wing B on the basic-body is sQz#ficantly higher than that computed 
by the partial sums of the Fourier series using 24 terms, and that the 
use of additional terms of the Fourier series improves the agreement 
between the two methods although increasing the disagreement with experi- 
ment. However, it should be remembered that if the series used to com- 
pute the wave drag has not converged reason8bly well within the number 
of terms used, any agreement with experiment may be fortuitous (possibly 
due to the influence of factors such 8s boundary layer not considered in 
the theory). Note that in figure 8 two vsJueB are plotted for M. = 1 
for the wing on the indented body. The point indicated by 8 triangle 
was computed by equation (10). For the point marked by 8 squ8re the 
wave drag of the modified region and the interference drag were computed 
by equation (11) and added to the wave drag of the wing on the basic body 
from previous calculations. In both cases.agreement with the Fourier 
seriee result is very good. 

These Comput8tiOnS were performed UslIig only 8 slide rule and 8 
planimeter, 8nd yet the results agree well:tith the Fourier Beriea method 
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r 
where the Fourier series h&s converged~~tisfactorily. The method has 
the distinct 8dvant8ge of being 8 flexible one , permitting the computer 
to work with greater care in critical regions and to achieve accuracy 8s 
good as the initial S*(xo,p cos 0) curves will permit. 

CONCLUDING REMAFKS 

AB might be expected from previous experience, the theory gives 
wave-drag results that are considerably higher th8n experiment at 8 M8ch 
number of 1 for most cases. However, 8s the Mach number increases, the 
agreement between theory and experiment becomes very good for ting A 
and for wing B on the b&sic body. For wing B on the modified body, the 
computed wave drag departs from the experimental as the Mach number 
increases slthough the agreement is good ne8r 8 Mach number of 1. 

COnBider8tiOn of the two'&&&&on8l methods used to evaluate the 
integr8.ls indicates that the Fourier series technique has the advantage 
of speed and Bt8IldardiatiOn when punched-card or other mechanized com- 
guting 6yBtem.S are 8vailable. When the gradient along the body axis of 
cross-sectional 8rea of the configuration is smooth enough for a reason- 
able number of harmonics to provide a good fit to the curve, the Fourier 
series method gives satisfactory results. Care should be taken to check 
the goodness of fit, or the convergence of the series. The method based 
on Legendre'B fOrIUUl8 is not so fast and requires more attention to 
detail on the part of the computer, but it is very flexible 8nd is cer- 
tainly to be preferred in the absence of mechanized computing devices. 
Either the method based on Legendre's formula or the Fourier an8lysis 
can give 8 fsirly rapid estim8te of the effect of 8 component to be 
added to 8 b&Sic configuration. 

In general, the methods discussed in this report for evaluating the 
w8ve drag of 8 wing-body combination agree well among themselves snd 
show good agreement with the experimental values when the configuration 
is sufficiently Blender and when the derivative 8long the body axis of 
the are8 distribution is smooth. 

&ES krOIl8UtiC81 Laboratory 
Nation81 AdViBOI'y Committee for Aeronautics 

tiffett Field, Calif., Jan. 6, 1955 
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APPENDIX 
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DELSCRIFTION OF CO3&QNENTS FOR WEIGH COMRTTAT IONSwERF~mRFO~ 

where l -- .- 

r0 = maxinmm radius = 1.875 inches : 

2 = length of body = 43 inches 

for t<x<t 2 I 

r = r, 

B. Modified, or indented, body 

for 0 <x <$ 

same as basic body 

for i<x<z 

where 

r = r. except in the regFon of the wing 
. 

s(x) bow = mo2 - 

that is, the body was indented, still remaining circular in cross section, 
so that the cross-sectional. area of the ting-body combination in planes 
perpendicular to the x axis was always e@ual to that of the basic body 
alone. In each case the wing was attached.just back of the mid-point of 
the body. 
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C. Wing A 

Wing tested by Whitcomb and described in reference 1 as "sweptback 
wing." 

quarter-chord line swept back 45' 

taper ratio = 0.6 

aspect ratio = 4 

NACA 65AoO6 sections in stream direction 

span = 24 inches .- . ..- 
,iH 

ting area = 144 square inches 

D. WLng B 

Wing tested by Whitcomb and described in reference 1 as 'tnswept 
Tag." 

quarter-chord line unswept 

taper ratio = 0 

aspect ratio = 4 

max5mum thickness 4-percent chord 

position of maximums thickness 40-percent chord 

cross section in stream direction circular arcs 

span = 24 inches 

wing area 144 square inches 
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FQure l.- Wing-body comblmtione considered in this repoti. 
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-1 

- wing and bos/c body 
---- wing and indented body 

#8cosc9= 0 

0 4 .8 12 16 2.0 2.4 2.8 3.2 
#, rodions 

Figure 2.- Variation of 3'(xo,$ cos 6) with cp for wing A for three 
values of B co6 8. 
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B cos 8 =.2292 
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,P cos 8 5.4583 
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Figure 3.- Variation of Sz(xotB co6 e)'with C&I for tin@; B for three 
values of p co8 8. 



26 NACA RM A35AO6a 

2 1 

J9cose=o 
t9 Cl 

0 
e 

I - 
a 

s A A A A 

b 

0 

I A . 
/9 cos 8 =.4583 0 

P 
I 

A 

0 4 8 12 /6 20 24 
m 

m 
Figure k.- Variation of 

c 
aP-,2 with m for wing A for three values of 

n=i 
B COB 8. 
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I I I I I I I I 5 )- 
Q whg and b$s[c body I * 

. 

A wing and indented body I I I I I I I 6 
4 -H-i-H--HI 

m 
m 

Figure 5.- Variation of 
c 

IU&~ with m for wing B for three values of 
11=1 p COB 8. 
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Figure 6.1 Variation of 
c 

%* with azimuth angle, 6, for wing A for four values of Mach 

Il=1 nmber, MO. 
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T/6 K/3 
8, rod/on5 
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Wing and bask body 

0 ?T.‘6 
6, rodfans 

T/3 

Winq and indented body 

(a) 24 terms of Fourier series (m = 24) 

4 

r: 3 
Q - 

\h4. = 1.026 1 
z 

I 
I ’ 
, ’ 
, : 

I a, . I 

0 0 7716 
8, radians 

Wing und bask body 

0 r/6 zw3 n/p 
8, radians 

Wfng and hdenfed body (b) 35 or more terms of Fourier series (m 2 35) 

m 
Figure 7.- VaxlcLtion of c n&2 tith azbruth a&e, 8, for wing B.for 

I-l=1 

four values of Mach number Mo. 
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- T..eory (24 terms of Fourier Series) 
---- Experiment (Ref./) 

A Computed using Eg. 00) 
I3 Computed using Eq. f/i/ by adding fhe 

effect of the body mod/‘fi’cution to 
the drug of the wing and basic body 
as obfoined from previous Fourier 
series cuIculufions. 

fBofh points are for wing und indented body) 

/ I.04 /. 08 
MO 

wing and +~sic body 

wing ond indented body 

Figure 8.- Wave-drag coefficient vs. Mach number for ting A in combina- 
tion with basic bow and indented body, 
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.u28 r-T-l - Tbeofy 124 ferms 
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of Fourier Series) 
-- - - Experiment (Ref. /I 
--- Theory 135 or mofe terms of Fourier Series) 

Q Slant cufs through indented region of body 
(24 ferms of Foufler Series) 

6 S/ant cuts though indented rep/on of body 
(35 terms of Fourier Series) 

A Computed using rq.00) 
a Computed using Eq. (1 /I 

-016 

co 

B/Z 

.OO8 

Wing and bosh body wing t?d iiP&?~f8d body 
/ 

Figure 9.- Wave-drag coefficient vs. Mach number for wing B in combina- 
tion with basic body and indented body. 
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Figure lO.- Intermediate steps in the evaluation of the wave drag of 
wfng B on indented body at & = 1.1, using slant cuts through 
indented region of body. 
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